Example 1
Consider the following arithmetic sequence:

$$
2 k-1 ; k+7 ; 5 k-5 ; \ldots
$$

1.1 Find the value of $k$.
1.2 Find the $1^{\text {st }}$ three terms of the sequence.
1.3 Find $T_{n}$.

| No | Solutions |
| :--- | :--- |
| 1.1 | $T_{2}-T_{1}=T_{3}-T_{2}$ <br> $(k+7)-(2 k-1)=(5 k-5)-(k+7)$ <br> $k+7-2 k+1=5 k-5-k-7$ <br> $-k+8=4 k-12$ <br> $-5 k=-20$ <br> $k=4$ |
| 1.2 | Now that we know the value of $k$, then we can substitute. <br> $=2 k-1 ; k+7 ; 5 k-5$ <br> $=2(4)-1 ; 4+7 ; 5(4)-5$ <br> $=8-1 ; 11 ; 20-5$ <br> $=7 ; 11 ; 15$ |
| 1.3 | When the value of $a=7$ and $d=4$ then <br> $T_{n}=a+(n-1) d$ <br> $T_{n}=7+(n-1)(4)$ <br> $T_{n}=7+4 n-4$ <br> $T_{n}=3+4 n$ |

HOMEWORK:

Consider the following sequence:

$$
7 ; 3 ;-1 ;-5 ; \ldots \ldots \ldots
$$

a) Find the $n t h$ term of the sequence.
b) Find the $30^{\text {th }}$ term.
c) Which term is equal to -153 ?
d) Calculate the sum of the first 50 terms of the sequence.

